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ALGORITHMS FOR CONFIDENCE CIRCLES AND ELLIPSES

Abstract

In many hydrographic surveying, navigation, and position location systems
the observed position is defined as the intersection of two lines of position,
each of which may be in error. This paper gives algorithms with new stopping
criteria for the determination of the probability that the true position T
lies within a circle of given radius centered at the observed position 0, and
conversely, the determination of the radius of a circle C with center 0 such
that the probability is p that T lies within C. In either case, the circle
centered at 0 is called a confidence circle.

Confidence ellipses are also considered and are shown to be superior to
confidence circles since they provide the same probability of location but
generally over a significantly smaller region.'

It is assumed that the errors associated with the Tines of position may
be approximated by a nonorthogonal bivariate dependent Gaussian distribution
where the errors are measured orthogonally to the lines of position. The

algorithms given are straightforﬁard and easy to implement on a microcomputer.

Biographical Sketch of Wayne E., Hoover

Wayne E. Hoover is a systems analyst with the National Oceanic and
Atmospheric Administration in Woods Hole, Massachusetts, and also is an
adjunct professor of mathematics at Cape Cod Community College in West
Barnstable. 1In 1977 he received his Ph.D. in numerical analysis from Michigan

State University.
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1,0 INTRODUCTION

Hydrographic surveyors, navigators, and others concerned with position
Tocation have traditionally determined their position by means of two
intersecting lines of position (LOPs). The LOPs may be derived from celestial
observations, trilateration, LORAN signals, satellite signals, etc.

Two questions important to position locators are the following: (1) What
is the probability that the true position T, which 1s generally unknown, s
locaFed R units or less from the observed position 0; and conversely, (2) What
is the radius of the circle C centered at 0 such that the probability is p
that T lies within C. .

" In either case, a circle of radius R which is centered at the observed

position O is called a confidence circle. It is also called a circle of
uncertainty or circle of equivalent probability.

This paper will outline the mathematical aspects of these problems and
then give new algorithms for their solution. The algorithms are straight-
forward, efficient, and readily implemented on a microcomputer.

Also, mention will be made of confidence ellipses which are actually much
easier to calculate than confidence circles; moreover, they are superior to
confidence circles since they provide the same probability of location over a
generally significantly smaller area.

Finally, several numerical examples illustrating the application of the

algorithms will be presented.

-1-
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2.0 MATHEMATICAL CONSIDERATIONS

. 2.1 Geometry

Designate the two lines of position by l.l and L,, respectively, and let
a, 0 < a <N, be the crossing angle from L1 measured in a positive or
counterclockwise direction to L,. Let 0 denote the intersection of the
LOPs. Thus 0 represents the observed or measured position.

Define the nonorthogonal U -u, coordinate systeﬁ such that uy and u,
intersect at 0, u, is perpendicular to L, u, is perpendicular to L,, and the

positive angle from u, to u, is I + a. This geometry follows that of Swanson

[9] and is i1lustrated in Figure 1.

Figure 1 Nonorthogonal Coordinate System

Note that Burt, Kaplan, and Keenly, et al [4] and also Bowditch [2] use a
different geometry by reversing the direction of the uz-axis. In this case,
the positive angle from u, to u, equals a. Moreover, this changes the sign of

the correlation coefficient Pr2°
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2.2 Assumptions

Throughout this paper we will assume the following:

1. In a small region G containing O, the earth is flat and the two LOPs
are straight lines.

2. The errors in the measurements which determine ml and L, are
normally distributed random variables with correlation coefficient
9,5+ 2€ro means, and standard deviations o, and o,, respectively,
where o is |'neasured along u; which is perpendicular to L;.

3. The bivariate error distribution is constant throughout the region G.

Thus it is assumed that the errors in the measurements of the LOPs, which
may or may not be correlated, may be approximated by a nonorthogonal bivariate
dependent Gaussian distribution.

This paper applies only to those position location systems for which the
above three assumptions provide the basis for a valid error model. It can be
a sizeable task to decide whether this model is appropriate for a specific

position location system,

2.3 Transformation to an Orthogonal System

Now trangform fhe nonorthogonal u -u, system to an orthogonal x-y
Cartesfan coordinate system centered at 0 and oriented such that the angle
from L1 to the positive x-axis is given by 6. Following convention, a
positive angle is measured in a counterclockwise direction. These coordinate
systems are illustrated in Figure 2.

The transformation is given by

u = xsin(e) + ycos(e)
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u, = xsin(a - 8) - ycos(a - 0).

2
The angle 8, which is defined in the next section, is chosen so that the

transformed variables are stochastically independent.

Figure 2 Orthogonal Coordinate System

2.4 The Error Ellipse

In order to determine the radius R(p) of the confidence circle C, or the
probability p(R) associated with C, it is necessary to first calculate the
parameters of the error ellipse, namely, the lengths of the semimajor and
semiminor axes and their orientation with respect to a coordinate system.

Defining the ancillary variables

2
3, = olsin(Za) + 2912°1°251"(°)

2 2
a, = olcos(Zu) + 291z°1°z°°5(“) to,

-4-
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L =o§ + 2plzolozcos(a) + o:
i

y [y + 4T

3 = 2sin2 (a)

and using the transformation given in Section 2.3, it can be shown that the

given nonorthogonal stanéa‘rd deviations o, and o, are transformed to o, and

1
Oys respectively, in the orthogonal x-y Cartesian coordinate system, where

+

o = [la +a)/3]
| ¥

oy " [(a; - a,)/3]

and "x'->-°y holds for all valid values of the input variables: o, >0,

1

6, 20,0 <a <, and -1 < Py ¢ 1. The error ellipse is the ellipse with

2
center 0, semimajor axis Oy which coincides with the positive x-axis, and
semiminor axis Oy which coincides with the positive y-axis.

The orientation of the error ellipse is calculated from

tan (®) = ax"z'

Note that this calculation must be performed so that 6 is obtained in the
proper quadrant. This can be achieved with the aid of the double argument
arctangent function or the rectangular-to-polar function. Thus, -1/2 < 6 <
R/2, where 8 is the angle from "1 to the positive x-axis. As before, a

positive angle represents a counterclockwise direction.
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Figure 3 The Error Ellipse

x» 9y and 6 is illustrated in Figure 3.

In the x-y coordinate system, the correlation pxy between the transformed

The error ellipse with parameters o

variables is zero,

-6-
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2.5 Confidence Ellipses

A confidence ellipse is an ellipse which is concentric to the error
ellipse and which has parameters Koy kay, and 6; k is called the elliptical
scale factor.

Sinceo, and o, represent the standard deviations of stochastically

y
independent random variables, the addition theorem for the chi-square
distribution may be used to show that the probability associated with a
confidence ellipse is given by

- .2
1K
p=l-e .

Conversely, the semimajor ko, and semiminor kay axes of a confidence
ellipse having specified probability p may be calculated from Gys Oys and

L
k = [-2*1n(1 - p)T.

Thus the error ellipse is a confidence ellipse with elliptical scale
factor k = 1 and probability approximately p.= 0.3935. The 50% and 95%
confidence ellipses have elliptical scale factors approximately 1.1774 and
2.4477, respectively.

Figure 4 contains a graph of the elliptical scale factor as a function

of probability.
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ERROR ELLIPSE SCALE FACTOR k
(&)

O 1 1 .| 1 1 L. 1 1 1 J

o 1 2 3 4 5 6 1 8 9 0
ELLIPTICAL ERROR PROBABILITY p

Figure 4 Elliptical Scale Factor vs. Probability

2.6 Confidence Circles

2
Let C denote a confidence circle, X%+ y2 = R, which 1s centered at 0
and which has positive radius R. Then the probability p = p(R) that the true

position T lies within a confidence circle C is

1 X 42 2
-z [5)" 1)
P(R) = z"tx"y fJ; zl % %" dxdy.
C

Defining the auxiliary parameters

K = R/ax

c °y/°x
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8 = 2¢/m
y = (k/2c)?

and the functions

wie) = (- 1cosle) - (2 +1)

yYw($)

flo) = (e - 13/w(y)

it can be shown that this double integral over the circle C can be reduced to

the single definite integral

p(R) = p(K,c) =8 flo)ds.
’ 0

The value of this integral provides the solution to questicn (1) stated in the

introduction.

2.7 Numerical Quadrature

Values of p(K,c) have been tabulated and are given in the Appendix.
However, in order to use such a table, double interpolation 1s required. For
values more precise.than those given in the table, the integral p(K,c) must be
evaluated numerically since it apparently cannot be expressed in closed

form. For definite integrals of the type p(K,c), Fettis [6] has shown that if
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a sufficiently small step size is chosen, the trapezoidal rule provides an
estimate for p(R) with arbitrarily small error..

Whenever the trapezoidal rule is effectively employed, Frame [7] suggests
that linear combinations of the rule with different step sizes will provide
additional estimates to the definite integral with only a minimal increase in
computational effort. Such a numerical quadrature formula is the fifth-order

derivative corrected Simpson's rule [10] with step size h = (b - a)/n:

b
-1
f(x)dx = =1 [70F(a) + £(b)] + 14'.'21 fla+in)
i=
a
n 2
+16 ] flavih-n/2)] - %6 (£ (b) - f'(a)].

j=1

Since the integrand, f(¢) = [é7"(°) - 1]/w(¢), which is required for the
calculation of p(R), is periodic with period 21, is symmetric about I, and has
continuous first derivative, f'(¢) vanishes at the end points of the interval
of integration, ¢ = 0 and ¢ =N. Therefore, for the definite integral under
consideration, the derivative corrected Simpson's rule is a linear combinatjon
of trapezoidal sums with step sizes h = II/n and h = 1/(2n).

The solution to question (1) stated in the introduction may now be
obtained by applying the trapezoidal rule with step size n/(2n) to p(K,c),
constructing from appropriate trapezoidal sums the derivative corrected

Simpson's value, and then using the absolute value of the difference

-10-
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to estimate the maximum absolute error for the former calculation which is
taken as an approximation to the probabililty p(R).

The technique of employing the fifth-order derivative corrected Simpson's
rule in order to estimate the error, E, in the punerical quadrature is
believed to be new and is more efficient than the customary repeated halving
the step size until a sufficiently small difference is obtained, since the
traditional technique uses a quadrature formula of the same order to
approximate the error. This technique §s well suited to microcomputers where
time is more critical than on larger computer systems.

The required inputs for the calculation of-the probability p(R) are 9ys
Oy585P,9 R, and n. The value of n is chosen so that the error estimate E
is sufficiently small. In most practical applications (i.e., K <4 and ¢ >
0.1), a value of n = 20 will result in at least seven digit accuracj for p(R).

Question (2) stated in the introduction may now be solved by iterating
on the radius R(p) until the desired probability is obtained. In practice,
the iteration is actually on the auxiliary parameter K = R/o,. For values of
p(R) less than 0.9999999, K assumes values between zero and 5.7.

These considerations provide an outline of the theoretical foundation for
the two algorithms given in the next section for the calculation of p(R) and
R(p) associated with confidence circles.

The calculations required for the parameters of a confidence ellipse are

straightforward and have been given in Sections 2.4 and 2.5.

3.0 ALGORITHMS

The first algorithm solves question (1) and is also referenced by the

second algorithm. The calculation of 6 in step two is an optional calculation

-11-
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‘'since it is not required for the computation of the pfobability p(R)
associated with a confidenc_e circle. The input parameters are 015 Ops Gy Py
and R. . _

The second algorithm solves question (2) and is based on the secant
method. Note that the iteration is actually performed on K which is related
to the radius of a confidence circle by K = R/o,. The input parameters are

01,02.0,912, and p.

3.1 Algorithm 1 for p(R)

1. a = o:sin(Za) + Zpuolczsin(u)

3, = otcos(&:) + 2 cos{a) + °§

12%1%
2 2
% = 61 + ZOIZOIGZCO_S(G) + dz

1
= 14 + 5T

Zsin2 (a)

UP
[}

+
2. o, =[(a +a)/a]

3
oy = [(3 - 3,)/5]

0 = %— ar'ctan(a1 /az) (Note: use arctan (y,x) or P-R function)

-l2-



5.

6..

7.
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¢ = ayﬁax
K =R/,
y = (K/2c)?

Select a positive integer n (e.g., n = 4)

h =q/n
wi¢) = (c2 - 1)cos(¢) - (c2 +1)
f0) = £ _ 13/m0e)
'rl = f(0) + f(n)

"5 e
T, = in
2

n -

hos D6 - N
E = [[T, + 2(T, - T5)Jc/n] /6

p B T LI

If £ is sufficiently small (e.g., E ¢ 10'5), accept p = p(R).

Otherwise, select a larger value for n and repeat steps 6 through 8.

13-
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3.2 Algorithm 2 for R(p)

1.. Perform steps 1 and 2 of algorithm 1.

2, Set { = 1 and select appropriate stﬁrting
values for the secant method (e.g. K, = 0.1, K, =3.9, g, = 0.08 - p,
.and g = 1.0).

3. Using the value of

K - Ko

9 - %

Kie1 = Ky - 95
where gy = Py - p for i > 1, perform steps 4 through 8 of algorithm 1
to obtain probability Piey e

4, If 944 is sufficiently small (e.g., |91+1| < 10.7). set

R = R(p) = oyKjs, and stop. Otherwise, repeat steps 3 and 4 with
i replaced by i + 1.

4.0 NUMERICAL EXAMPLES

The following examples illustrate the application of the two algorithms

presented in the previous section.

4.1 Example 1

A navigator reports the ship's position at 41°46' N and 50°14' W.
.Assumiﬁg the angle of crossing between the two LOPs is a = 30°, there are no
systematic errors, and the random errors in the two nonorthogonal directions
are normally and independently distributed with standard deviations o, = 2 nm

1
ando, = 1 nm, calculate the parameters of the error ellipse and the radii of

-14-
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the confidence circles for the various probabilities indicated in Table 1.
‘Also compute the sizes, areas, and the probabilities associated with the 1dRMS
and 20RNS circles where 1RMS” = o, + o and 2RMS = 2¢1dRMS. The tem 1dRMS
is also called radial error or root mean square error.

Use algorithm 1 to calculate the parameters of the error ellipse: Oy
4.3778 nm, ay = 0.9137 nm, and ¢ = 24.5533°.' The resulting error ellipse is
shown in Figure S. | ]

Coﬁtinuinglwith algorithm 1, set n'f 7 and compute 2dRMS = 8.9443 nm,
p(2dRMS) = 0,9579, and E = 4.3"10-7 where E is an estimate of the maximum
absolute error in p(R). Similarly calculate the values for the 1dRMS circle

as indicated in Table 1.

o, 2
az ]

a 30
O 438
oy 9

[ 24.55

o,/0, 21
WRMS | 447
20RMS | 894

Figure > The Error Ellipse

«15-
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Next, use algorithm 2 to calculate the rema{ning values 1isted in Table
1. For reference, the 1dRMS and 2dRMS values computed from algorithm 1 are
included in Table 1. See Figure 6 for a plot of the radius of the confidence
circle as a nonlinear function of probability. Note that 2dRMS is an upper
bound for the radius of the 95% circle. The circular péobable error or
circular error probable, CEP, is the radius of the 50% circle.

Use the elliptical scale factor k = 2.4477 to calculate the semimajor and
semiminor axes of the 95% ellipse, 10.7158 nm and 2.2365 nm, respectively.
The area of the 95% ellipse is 75.3 nnﬁ. Since the radius of the 95% circle
is 8.6302 nm, the area of the 95% circle is 234.0 nmz. Thus the area of the
95% circle is 211% larger than the area of the 95% ellipse and yet both

provide the same confidence for position location.

Table 1 Parameters associated with g, © 2, o, = 1, a = 30°, and Pyp = 0

Probability Radius Area n Error Bound
p R A E
.01 0.2846 0.3 1 1.3e-13
.10 0.9565 2.9 1 1.9e-7
.50 3.1033 30.3 3 6.2E-8
.68218 4.472)* 62.8 4 1.8E-7
.75 5.1216 82.4 5 1.8E-8
.90 7.2604 165.6 6 3.4E-7
.95 8.6302 234.0 7 2.5E-7
.95786 8.944 3** 251.3 7 4,3E-7
.99 11.3144 402.2 8 6.1E-7
.999 14.4349 654.6 9 4,0E-7
.99499 17.0573 914.1 10 1.0E-7
.99999 19.3592 1177.4 10 1.1E-7
*  1RMS
**  2dRMS

-16-
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2dRMS
95 %

) I

]

1 dRMS

CEP
PROBABILITY

12—

+]

sNIgvy

Figure 6 Confidence Circles with o, =

2, 0

-17-
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4.2 Example 2

Consider a position location system where g, =0, * 1 unit and the angle
of crossinga varies between O and I. For various values of a and assuming
Pya =0, Table 2 gives the parameters of the error ellipse and the sizes,
areas, and probabjlities associated with the 95% and 2d&RMS confidence
circles. Table 3 gives the areas of these 95% circles and ellipses as a
function of a. Figure 7 shows a plot of the radius of the 95% circle as a

function of a.

4.3 Example 3

(See Bowditch [2].) Assuming o, =15m, 0, =20 m, a = 50°, and p,, = O,
determine the probability of location within a circle of radius R = 30 m.

Set n =2 in algorithm 1 and obtain o, = 29.8895 m, oy = 13,1023 m, 6 =
15.7733°, and p(30 m) = 0.6175. The error estimate is € = 1.3*10-7 while the

actual error is 1,0*10 8.

Set n =3 in algorithm 2 and compute the radius of the 95% circle: R =
60.2437 m with E = 1.4*10-6. Also, using n = 5, the radius of the 99.9%
circle is found to be R = 99,3274 m with E = 8,1%10 ",

The parameters of the 95% ellipse are ko, = 73.1620 m, koy = 32.0712 m,
and 8 = 15,7733°, The area of the 95% circle, 11401.8 m2 is 55% greater than

the area of the 95% confidence ellipse, 7371.4 nF.

-18-
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Table 2 Parameters associated with o9, =0, " 1 and Py ® 0

Radius Area Prob Radius Area 2dRMS
a ] oy % C=g y"’x 2dRMS R=2dRMS p(R=2dRMS) | R(p=0.95) R(p=0.95) p=0.

0.1 (179.9){ 0.05 (-.05) | 810.2848 ] .70711| .00087 | 1620.5702 | 8250 600.6 95450 1588.1292 | 7923 581.2 1.0199
1 (179) 0.5 (-.50)| 81.0295| .70713| .0087 162.0652 82 514.3 95451 158.8165 79 239.4 1.0205
5 (175) 2.5 (-2.5)] 16.2108) ,70778| .0437 32.4526 3 308.6 95465 31,7805 3 173,00 1.0211
10 (170) 5 {-5) 8.1131 | .7098 0875 16,2883 8331.5 95511 15,9174 796.0 1.0233
20 (160) |10 (-10) 4.,0721 | .7180 .1763 8.2698 214.9 95693 8.0140 201.8 1.0319
30 (150) |15 (-15) 2.7321 ] .7321 «2679 5.6569 100.5 95986 5.4069 91.8 1.0462
40 (140) |20 (-20) 2.0674 1 .752% «3640 4.4003 60.8 96315 4.1280 53.5 1.0660
50 (130) |25 (-25) 1.67321 .7802 4663 3.6922 42.8 «96833 3.3867 36.0 1.0902
60 (120) |30 (-30) 1.4142 | .8165 5774 3.2660 33.5 «97316 2.9266 26.9 1.1160
70 (110) [35 (-35) 1.2328 | .8632 »7002 3.0099 28.5 97753 2.6458 22.0 1.1376
80 (100) |40 {-40) 1.,1001 | .9231 | '.8391 2.8721 25.9 .98059 2.4950 19.6 1.1511
90 45 1.0000 | 1.0000 | 1.0000 2.8284 25.1 98168 2.4477 18.8 1,1555

$3SdIT113 ONY SITOYID JINIQINOD ¥04 SKH1I¥09TV
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Table 3 Areas of 95% Confidence Circles and Ellipses
when o, = 9, ® 1 and Pra ® 0

a Oy o A1=Area of A2=Area of A1

y 95% Circle |[95% Ellipse 7;:
0.1 (179.9) | 810.2848 | 70711 7923 581.2 | 10 784.6 734.71
1 (179) 81.0295 | .70713 79 239.4 | 1078.5 73.47
5 (175) 16.2108 | .70778 3 173.0 216.0 14.69
10 (170) 8.1131 | .7098 796.0 108.4 7.34
20  (160) a.0721 | .nso 201.8 55.0 3.67
30 (150) 2.7321 | .1321 91.8 37.6 2.44
a0  (140) 2.0674 | .7525 53,5 29.3 1.83
50 (130) 1.6732 | .7802 36.0 24.6 1.47
60 (120) 1.4142 | .8165 26.9 21,7 1.24
70 110) 1.2328 .8632 22.0 20.0 1.10
80  (100) 1.1001 | .9231 19.6 19.1 1.02
90 1.0000 | 1.0000 18.8 18.8 1.00
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Figure 7 Radius of the Y5% Confidence Circle when oy = 92 = 1 and p)2
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4.4 Example 4

Repeat Example 3 with correlation Pro ® 0.5. Algorithm 1 with n = 3 gives o, =
36.1325 m, oy = 9.3864 m, 8 = 19.5924°, and p(30 m) = 0.5666 with E = 1.9*10-8.
Algorithm 2 with n = 6 gives for the 95% circle, R = 71.4658 m and
E= 5.8*10-8. The radius of the 99.9% circle is calculated with n = 7 to be
R = 119,2786 m where E = 6.1*10 .

The 95% ellipse has parameters ko, = 88,4433 m, ko, = 22,9756 m, and

y
6 = 19,5924°, The area of the 95% circle, 16045.2 n? is 151% greater than the area
of the 95% confidence ellipse, 6383.8 n . |

Comparing the results of Examples 3 and 4, it may be observed that the effect
of changing the correlation from zero to 0.5 is to increase by 41% the area of the
95% circle while the area of the 95% ellipse is decreased by 13%. Moreover, the
orientation of the 95% ellipse is increased from 15.7733° to 19.5924°.

These examples suggest that confidence ellipses are superior to confidence
circles since they provide the same probability of location but over a significantly
smaller area. To be more precise, for any legitimate values of Oys Gy O and p,,»
the area of the 95% ellipse is n*ln(400)o,py while the area of the 95% circle is
less than the area of the 2dRMS circle, 4n(oi + o§).

In the best of circumstances, that is when 0, =0,,0a = n/2, and Pig = 0, the
area of the 95% circle is equal to the area of the 95% ellipse. However, as Example
1 shows, in less than ideal conditions the 95% circle can be several hundred percent
larger than the 95% ellipse. Clearly, in such situations, for any probability the

confidence ellipse is to be preferred over the confidence circle since a

substantially smaller area provides the same probability of location.
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5.0 EQUIVALENT FORMULAS FOR THE ERROR ELLIPSE

Defining
o2 2
A o, +2,,0,0,co05(a) + o,

B =21 - ptzli;lozs‘ln(c)

2
c = olcot(u) +py,0 cscia)

1%2

it can be shown that the semimajor and semiminor axes of the error ellipse may

be calculated from

P

°2x . %-cscz @A+ R - )

i
o; =%-csc2 (@)[A - (& - 82]2]

or

o2 = %- A*csc (a) + C*csc(2e)
X

°§ %-A*cscz(a) - C*csc(29).

5.1 Special Cases

For the special case o, =0, = ¢, and Py, =0, it can be shown that the

parameters of the error ellipse simplify to the following:
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o, =o*escla)[l + |cos(a)]]

i
oy = o*cscla)[1 - lcos(c)llz

6 =a/2.

Burt, Kaplan, and Keenly's [4] and Bowditch's [2] formulas for this
special case must be used with caution since their formulas for o, and oy
implicitly require that the crossing angle between the two LOPs must be
acute. Their formulas give incorrect results for obtuse crossing angles.

Now if 0, =0, =6,p,, = 0, and a is res_tricted to values strictly
between 0 and i/2, then g, and oy may be further simplified to

T
o, =2 o*cscl(a/2)

oy = 2 "o*secla/2)

Finally, if 0, =0, 50,9, = 0, and a = /2, then all calculations can

be greatly simplified to the circular normal distribution:

Cx =0
Cy =0
] =0
- R ,2
p(R) = 1 - e%'[ v
+

R(p) =0 [-2*In(1 - p)] .
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6.0 APPLICATION TO LORAN-C

Bregstone [3], Collins [5], Pierce, McKenzie, and Woodward [8], and
Worrell [12] state explicitly or assume implicitly that assumptions (1), (2),
and (3) listed in Section 2.2 with Prp = 0 may be applied to LORAN-C. Swanson
[9] also accepts the three assumptions but suggests a value of 0.5 for the
correlation of the time-difference or TD errors.

Amos and Feldman [1] point out that the TD error is a function of .many
variables. In reality, because of the current design of m&ny LORAN-C
receivers, the central 1imit theorem of probability theory applies and it is
reasonable to assume that the TD errors are approximately normally

distributed.

The value for the correlation Prso is often taken as zero; however, it is
1ikely that another value such as 0.5 should be used, Significant differences
in the sizes and orientations of confidence ellipses as well as the sizes of
confidence circles may be observed if the correlation is taken as 0.5 instead
of zero.

The U.S. Coast Guard periodically publishes revised specifications of the
transmitted.LORAN-C signal. In this respect, see reference [11]. The current

value given for the standard deviation of. the TD erors is 100 nanoseconds.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Algorithms with new stopping criteria have been given which may be used
to solve two standard problems in position location: (1) Find the probability
p that the true position T is within a circle of radius R centered at the
observed position 0; and, (2) Find the radius R of the circle C centered at 0
such that the probability is.p that T l1ies within C.
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It is assumed that the errors associated with the 1ines of position may
be approximated by'a nonorthogonal bivariate dependent Gaussian distribution
where the errors are measured orthogonally to the LOPs. The algorithms
presented for this model are readily implemented on a microcomputer,
Moreover, they are practical since they avoid the use of probability curves,
tables, charts, nomograms, fictitious functions and angles of cut, special
ratios, sigma star factors, double Langrangian interpolation, and Bessel
functions which are required by some methods of solution.

Numerical results confirm the high accuracy and efficiency of the
algorithms presented herein for the calculation of the parameters associated
with the error e]lipsé and confidence circles.

Confidence circles are conceptually easily understood and frequently
used; however, with the advent of microcomputers with powerful graphics
capabilities, confidence ellipses should be considered as a superfor
alternative in applications where confidence circles have traditionally been
used since much less computation is required for the parameters of a
confidence ellipse than for a confidence circle. Moreover, the area of a
confidence ellipse is generally substantially less than the area of a
confidence circle having the same associated probability; this can be
important not only in routine position location, but even more so, in critical
search and rescue missfons.

Finally, as previously stated, the algorithms are appropriate only when
the error model described in Section 2.2 is valid for the particular position
location system under consideration. Also note that the algorithms must be
modified in situations such as the missile or target problem where the errors
are measured parallel to the axes of a coordinate system rather than

orthogonally to the LOPs as is the case in position location calculations.
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APPEMDIX: CIRCULAR ERROR PROBABILITIES

K/e 0.0

0.1  .07965567
0.2 .15851942
0.3 .23582284
0.4  ,31084348
0.5 38292492

0.6 45149376
0.7 .51607270
0.8 57628920
0.9 .63187975
1.0 .68268949

1.1 .72866788
1.2 76986066
1.3 .80639903
1.4 .83848668
1.5 .86638560

1.6  .89040142
17 91086907

1.8 .92813936
1.9 .94256688

2.0 .9544994

2.1 96427116
2.2 .97219310
2.3 97855128
2.4 98360493

2.5 .98758067
2.6 .99067762
2.7 .99306605
2.8 .99488974
2.9 99626837
3.0 .99730020
3.1 99806479
3.2 99862872
3.3 .99903315
3.4 99932614
3.5 .99953474
.6 .99968178
3.7 .99978440
3.8 .99985530
3.9 .99990381
4,0 99993666
4.1  .99995868
4,2 .99997331
4.3 .99998292
4.4 99998917
4.5 99999320
4,6 .99999578
4.7  .99999740
4.8 99999841
4.9  .99999904
S.0  .99999943

5.1  .99999966
5.2 .99999980
5.3 .99999988
5.4 .99999993
5.5  .99999996

5.6 .99999998
5.7 .99999999
5.8 .99999999

0.1

« 00439882
«1339784)
+22138043
«30102290
+ 37558843

«44577086
«51150481
+51259569
52887213
+68023254

+12665967
.76822148
+80506480
+83740489
86551266

.88970083
«91031019
92769639
.94221819
95422722

«96405976
.97203038
97842751
98351079
98750994

«99062493
«99302712
«99486123
+99624767
99728531

.99805417
.99861821
+99902789
.99932249
.99953223

99968007
99978324
+99985453
99990329
.99993632

«99995847
+99997317
«99998283
99998912
.99999317

+99999575
99999738
«99999841
«99999904
+99999942

199999966
99999980
99999988
+99999993
+99999996

+99999998
«99999999
«99999999

.Re21197
08845339
17393007
.26351819
34817902

42556056
+49606835
-56044571
61913541
+67235867

72026823
-76303049
-80085535
.83400178
86277282

88750602
90856194
«92631248
94112996
.95337750

»96340112
+97152372
.97804079
.98321798
98729005

«99046116
+99290619
99477268
«99618340
«99723907

+99802119
«99859490
+99901156
«99931115
+99952443

.99967476
«99977965
.99985213
499990170
«99993527

«99995779
«99997273
«99998255
499998894
299999306

.99999568
«99999734
+99999838
+99999902
+99999941

99999965
.99999980
«99999988
+99999993
+99999996

«99999998
+99999999
+99999999

0.3

.01641775
«06283969
13182815
21390853
30030019

+38463741
«46332588
53493877
« 59931400
65682424

+70796818
«75321755
«79299679
82770477
85773618

88349137
+90537663
.92379894
+93915857
95184149

+96221269
.97061093
.97734503
98269178
98689528

.99016742
«99268943
«99461409
+99606837
499715634

99796223
+99855325
99898239
99929092
99951052

+99966527
+99977325
.99984785
«99989886
«99993341

«99995657
«99997195
99998205
«99998863
+99999286

+99999556
299999727
+99999833
+99999899
«99999940

+99999964
+99999979
.99999988
«99999993
99999996

99999998
«99999999
99999999
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62912495

«68593673
«73585580
+17935506
+81698517
-84930716

87686446
+90017456
.91972753
93538555
94938155

+96031702
.96915971
-97624187
«98185541
«9862720¢

+98970046

«99993051

«99995468
«99997073
«99998127
«99998813
«99999255

99999537

0.5

«00993781
.03901935
« 08515354
.14518087
«21528872

«29146823
«36993053
«44742080
«52139984
+59009533

-55244889
«70799732
«15672656
«79892884
+83508160

«86575592
89155362
+91306800
493086154
~94545458

«95732052
-96688448
+97452393
.98057026
«98531115

.98899336
«99182603
+99398423
«99561262
.99682936

«99772961
«99838920
.99886771
99921145
«99945594

«99962813
«99974820
«99983111
+99988778
«99992614

«99995185
«99996890
«99998011
+99998740
+99999209

«99999508
«99999697
«99999816
+99999889
+99999933

+99999961
.99999977
«99999987
«99999992
+99999996

0.6

-00829412
+03271241
.07191031
+12379829
«18570489

«25481781
«32803032
40256292
47593157
+54613196

61163161
+67142689
«12496235
«717208895
«81292873

.+84783930
87731164 -

90191102
92222772

93884177

+95229986
«96310169
+97169345
97846612
.98375690

98785268
«99099441
«99338209
99517978
+99652052

«99751096

«99913755
+99940533

+99959377
99972508
+99981568
«99987758
99991946

«99994751
99996611
+99997833
+99998628
+99999139

«99999465
+99999671-
«99999798
+99999879
«99999928

«99999957
+99999975
499999985
+99999992
+99999995

-99999997
99999998
«99999999

5.9 1,00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

0.7

«00711578
-02814165
+0621 3865
+10762379
+16268303

22511143
+29256543

36271224 -

«43336291
50257901

«56874674
+63061681
.68731223
473830894
«78339628

82262457
285624712
.88466237
90836080
92787988

«94376684
+95655220
.96673063
-97474955
98100352

.98583311
+98952681
499232491
«99442459
«99598541

+99713480
.9979732?
+99857919
99901292
«99932046

99953644
+99968668
«99979017
499986078
«99990849

«99994041
+99996156
«99997544
«9999844%
«99993025

+99999395
.99999628
«99999773
+99999863
«99999918

«99999952
«99999972
«99999984
+99999991
«99999995

+99999997
+99999998
+99999999
+99999999

0.8

00623002
«02468247
05465986
«09504961
14430413

«20097981
«26293740

46214212

+52724621
.58934943
64743948
«10078999
«74895002

+79171937
+82911370
.86132384
88867314
91157619

+93050133
94593852
.95837388
96826981
«97605221

«98210228
98675296
.99028880
+99294821
«9949273%

+99638509
«99744776
«99821466
«99876261
»99915025

.99942181
«99961019
.99973960
«99982765
«99988697

«99992656
+99995273
«99996985
+99998095
+99998808

99999261
«99999546
«99999724
+99999833
+99999901

+99999941
«99999966
«99999980
99999989
«99999993

«99999996
+99999998
-99999999
99999999

0.9

«00554007
«(R197579
00876397
08503269
«12962866

«18117832

42575533

-48878740
54987365
60798223
.66230358
+71225465

75747088
+19778816
-83321750
86391495
89014951

912Ny

.95808039
«96791357

97569685
«98178371
«98648753
«99008026
499279253

99481678
99631047
«99740035
99818678
99874802

+99914419
499942084
«9996119%
+99974257
+99983090

«99983002
99992917
-99995483
.99997147
«99998216

299998895
+99999322
+99999588
+99999752
«99999852

«99999513
99999949
«99999971
+99999983
+99999990

«99999995
+99999997
+99999998
99999999

1.00000000 1.00000000 1.00000000

«07688365
1175010

16472979
« 21729546
«27385095
33302319
.39306934

«45392587
51324774
« 57004264
62468890
«67534753

12196270
+ 16425392

4010130
-835525548

86466472

+88974947
.91107838
.9289946%
94386524
+95605307
96595255
«97387859
98015891
98507921
.98889100

«99181130

99781251

-99846619
«99893523
99326820

p(K.c) = probability that a point 1ies within a circle whose center s at the origin and whose radius is R o Xo,. Here

c " c,/cl where o, is the larger standard devistion. The tadble gives values of the standard orthogonal bivariate independent
Gaussian distribution.
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